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It is demonstrated for the example of Hi that with the cor.ventional basis expansion method 
(in terms of Gaussians) with fixed non-linear parameters the error of a computed potential curve 
varies strongly with the geometry. If the non-linear parameters are optimized for the equilibrium 
geometry, much larger errors arise for other geometries. This is very pronounced if only or.e 
polarization function of a given I is added to the basis, ar.d qualitatively the same problem arises 
for any new I. The dependence of the error on the distance may also be oscillatory. For the 
example of Li2 in the SCF or an MC-SCF approximation essentially the same effects are observed. 
Here in addition substantial errors for large R may arise in the SCF curve if the basis is not able 
to describe the spurious ionic contributions. 

If one computes a potential energy surface (PES) via pointwise approximate solution 
of the Schr6dinger equation by the basis expanison method one cannot expect that 
the error is independent of the geometry, not even that it depends monotonically on 
changes in the geometry. This has been known since the early days of numerical 
quantum chemistry but is usually not checked in routine calculations of PES, except 
if one strives for very high accuracy 1. It is the purpose of this letter to draw attention 
to the fact that potential surfaces obtained with standard basis sets may be quite 
inaccurate even if the error at the equilibrium distance is satisfactorily small. 

It is also a wisdom of the early days of numerical quantum chemistry that consistent 
accuracy for different geometries can only be achieved if the non-linear parameters 
of the basis are optimized for each geometry2. This is, however, a very expensive 
procedure. It is usually cheaper to increase the size of the basis, but this may lead 
to an oscillatory dependence of the error on geometrical parameters, as we shall 
show here. 

We shall, in this study, consider first the H; system in detail, mainly since the 
exact potential curve for this system is known and since the only errors that one 
makes are due to the choice of the basis. There is hence no interference with other 
sources of errors such as the problem to account for electron correlation etc .. 
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H;, admittedly, is not in all respects typical for molecules currently investigated. 
On one hand H; is an ion, and long-range induction effects - which are not present 
in neutral molecules - are very important, we therefore get larger errors than we 
would e.g. get for Hz. On the other hand the limit of non-interacting systems (R ~ 00) 
is - even for modest basis sets - described so well that the error for finite R is never 
smaller than that for R = 00, i.e. that "counterpoise" corrections3 are not necessary. 

For molecules larger than H; exact PES are not available, but a good measure 
of the accuracy of the calculation with a given basis set is the difference between 
this PES and that calculated with a somewhat larger basis. The simplest nontrivial 
example is that of Liz in the SCF approximation. It shows, in fact, similar effects 
as H;. Note that much larger variations of the error with the basis set are to be 
expected if correlation effects are included. 

CALCULATIONS 

H; with Various Basis Sets 

We have started with calculations of H; with Gaussian basis sets consisting of 
s-functions (centered on the respective nuclei) only. The error A(R) of the calculated 
potential curve (PC) compared to the exact one4 is plotted in Figs I a and 1 b in different 
scale, for 0 ~ R ~ lOao. * 

For all but the largest basis sets the maximum error arises at R = 0, but this 
error is not very serious since the PC is very repulsive near R = 0 anyway. All 
s-only calculations show a local maximum of A(R) near R = 2·Sao, slightly larger 
than the equilibrium distance 2ao. The size of this error appears to reach a limit of 
12·5 millihartree (mH)** for a "saturated" s-basis, while for rather modest s-basis 
sets an error near 20 mH is obtained. This is a considerable fraction of the binding 
energy of 103 mHo 

The error A(R) also exihibits a local minimum, somewhere between R = 0 and 
R = 2ao• the magnitude of which depends on the size of the basis. 

The effect of contracting the steepest lobes in the basis is negligible for R > 3ao 
and very small for 3ao > R > lao. Relaxation of the contraction reduces the error 
considerably only for very small R. This is to be excepted, since for R ~ 0 H; 
approaches the united atom He+ and larger exponents of the basis functions are 
needed - which are present in the part of the basis that is usually contracted. It 
appears that for a "saturated" s-basis the error for R ;5 O·Sao becomes very small. 

Next we took basis sets with sand p functions. The results for basis sets with 
a moderately good s basis (5 lobes in the contraction 311) and a single p function 

• ao= 0'529177. to- 10 m. 
** 1 mH = 2'6255 . 103 J mol- 1 . 
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(as is often used in practice) are shown in Fig. 2. Both the size and the location of the 
maximum error depend sensitively on the chosen exponent. The error at the equi
librium distance R = 2a o is minimized by the exponent 'I = 0·594 to ,1 ~ 1 mHo 
However the error varies considerably in the neighbourhood of the minimum distance, 
it has a maximum of ~5 mH near twice the equilibrium distance R = 4ao and it has 
a similar value at half the equilibrium distance. If one wants to minimize the error 
at large distances an exponent 'I = 0·1 is very goodS, but for this exponent one has 
an error of ::::; 12 mH at the equilibrium distance. 

By optimizing 'I as a function of R one can reduce the error in the whole region 
lu o < R < 10ao to ~2 mH, but this is, of course, expensive and one prefers to use 
two or more' p functions with fixed exponents. The errors from such calculations are 
shown in Fig. 3. 

One can choose the two exponents such that the error is minimal near the equi
librium distance. This is achieved for '11 = 1'0, '12 = 0·33. The error is then 0'7 mH 
at R = 2'Oao (roughly half that obtained with a single p-function) but it is twice 
as large at R = 5·Oao. One might expect that the combination '1 = 0·594 (good for 
R = 2ao) and '1 = 0·1 (good for R > 5uo) should be a good compromise between 
the IJ needed for small and large R. This basis set is, in fact, only slightly worse than 
the (1'0/0'33) set near R = 2ao and much better than the (1'0/0'33) set for R > 5ao. 

However, the error is strongly dependent on R and has a steep maximum (,1 = 2 mH 
near R = 4ao). 

With three p-sets one does better, but the error is still far from being a monotonic 
function of R, and the steep increase of the error for R < 2ao is unpleasant. How
ever, as we have seen before, the error in this region can be reduced by augmenting 
the s- basis. 

The error near the equilibrium distance can be reduced by adding a d-function with 
'I = 1·0. L1 becomes 0·3 mH for a (3118, 3p, lei) basis and 0·1 mH for a (311118, 3p, 
I el) basis. In either case the error has a local maximum of 0·75 or 0-45 mH respecti
vely at R = 4·5ao. In order to have an error ~O'l mH consistently for all R one 
must optimize the exponent of the d-function as a function of R, or use two (or better 
three) d-functions with fixed exponents. The same game starts again if one includes 
an I-function. 

On any level of accuracy that one wants to reach minimization of the error at the 
equilibrium distance automatically implies much larger errors at distances larger or 

shorter than Ro. 

Liz in the SCF-Approximation 

An exact (restricted) Hartree-Fock potential curve of Liz is, of course, not known. 
We have therefore taken the results obtained with a (lis, 7 p, 2d) basis as reference. 
From the fact that the error of a basis without d-functions with respect to this 
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Hi. Error .d(R) in millihartree of calculations with various "s-only" Huzinaga Gaussian basis 
sets. R in aQ. X (21),8 (111), * (311),0 (\ 1111), + (31111); la and 1b in different scale 
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As Fig. I, but basis sets including two or 
three p-functions and no or one d-fur.ction. 
The s-part is (311), except for + where it is 
(31111). lip: X 0'594,0'1; 8 1'0,0'33; * 1'0. 
0'33,0'1; 0 1'0,0'33,0'1; + 1'0,0'33,0'1; 
lid 1'0 
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As Fig. 5, but in a three-configuration 
MC-SCF (only a-MOs) and exponents as on 
Fig. 6 
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reference is smaller than 0·2 mH (see Fig. 5) in the whole region of distances, we 
conclude that the errors with respect to the exact PC would not differ much from 
those with respect to our reference. 

In Fig. 4 the errors from calculations with a 7s-basis and p-sets of various size are 
plotted. With s-function only we find a (local) minimum A(3ao) = 12·5 mH, a (local) 
maximum A(4ao) = 16·5 mH and another flat local minimum A(7ao) = 11 mHo 

One p-function (with '7 = 0·07), leads to a lowering of the error by 5 -7 mH, 
almost independent of R. The results with two p-sets ('71 = 0·07, '72 = 0·0292) do not 
differ much from those with one p-set. With three d sets ('11 = 0·175; '72 = 0·07; 
'13 = 0·0292) the local maximum seems to disappear and the error is rather inde
pe·ndent of R in the region 3ao ~ R ~ 7 ao, although its size ( ~ 5 mH) is rather large 
(the binding energy is 39 mH). 

Increasing of the size of the s-basis from 7s to l1s (contraction 3,4 x 1 and 3,8 x 1 
respectively) has a noticeable effect for large R. While with 7s the error increases 
with R for R ~ 7ao, it decreases with the 9s basis and appears to approach zero 
for large enough R (to test this is not so easy due to SCF convergence problems at 
these large distances). 

The (local) maximum error is, on going from 7s to 11s, only reduced from 16 to 
t 1 mHo The effect of the addition of 1, 2 or 3 p-sets is similar as with the 5s basis. 
With tis and 3 p the error is for 3 ~ R ~ 10ao of the order 1 mHo 

Since one may argue that the SCF approximation is quite unphysical for large R, 
one may as well conclude that the SCF-basis errors for large R are rather meaningless. 
We have therefore compared the same basis sets in a MC-SCF calculation, consisting 
of two 0'; and one a; configurations for the valence electrons. The results are in 
Figs 6 and 7. For the basis sets with a large s-part (Figs 5 and 7) the pattern is quali
tatively very similar in the SCF and the MC-SCF case. For the basis sets with a small 
s-part (Figs 4 and 6) the errors in the MC-SCF calculation for all discussed basis 
sets become small for R -+ 00 and reach the limit of the error for two Li atoms 
(4·6 mH), but in the SCF calculations the error increases with R. The explanation 
is probably the following one. 

For large R the SCF wave function is a mixture of "covalent" and an "ionic" struc
ture. The latter, describing the system Li + -Li - requires basis functions with very 
small '7 (so-called "diffuse functions"). These are not present in the basis sets with 
small s-part, but are available in the larger basis. So the error in Fig. 4 for large R 
is due to the unability of the basis to describe the (physically spurious) ioniccontribu
tions in the SCF wave function. 

CONCLUSION 

The results of this study indicate clearly that calculations without polarization func
tions or the inclusion of a single polarization function (with fixed exponent '7) of 
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a given angular momentum I necessarily lead to a substantial variation of the error 
of a computed potential curve (or hypersurface) with changes of the geometry. 
If one optimizes the exponent '1 of this polarization function for the equilibrium 
geometry one gets rather large errors for other geometries. Individual optimization 
of '1 for each computed geometry is better, but usually too time-consuming. Use of 
more than one polarization function reduces the error, but may lead to a strong 
oscillatory behaviour of the error on the bond distance. With other choices of the 
exponents than those reported here one can even get more spectacular oscillations. 

The problem how to achieve consistent accuracy over a whole potential surface 
without an i.ntolerable amount of computational effort cannot be regarded as solved, 
at least as far traditional basis expansion methods are concerned. 

It should be noted that the errors to which we have here paid attention result from 
the fact that a polarization function with a fixed '1 has a "maximum overlapping 
power" at some R('1). They have nothing to do with the well-known basis superposi
tion errors\ which come from the fact that a "molecular basis" describes a single 
atom better than a purely "atomic basis". These errors also vary with the geometry, 
but can be corrected by the counterpoise method. There are further errors due to 
the inability of gaussian wave functions to take care of the nuclear cusp condition6 • 

In the case of Hi these errors are much smaller than those considered here. 

I f there are strong variations of the error with the geometry one might expect wrong 
equilibrium geometries and force constants. However, if the non-linear parameters 
are optimized for the equilibrium geometry, the variations of the error in immediate 
neighborhood of the equilibrium geometry are small, such that the effect on equi
librium geometries and force constants is quite small. In fact the Re and we values 
obtained with the basis sets of this study look rather reasonable and do not display 
the erratic behaviour of A(R). Conversely good equilibrium geometries and force 
constants do not imply a good description of the potential surfaces for other geo
metries (and this independently of the fact that often molecules are in well-closed shell 
states only in their equilibrium geometry and close to it). 

There are other (and possibly more serious) sources of errors in potential hyper
surfaces, mainly those due to our inability to account for 100% of the correlation 
energy and the fact that the correlation energy is often very sensitive to changes 
in the geometry. The observation that even for the simplest possible molecule, namely 
Hi. standard quantum chemical methods are hardly capable of guaranteeing a con
sistent accuracy along the potential curve, should certainly damp our optimism 
concerning the quantum chemical methods in current use. 
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